
NAG Fortran Library Routine Document

F01BRF

Note: before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold italicised terms and
other implementation-dependent details.

1 Purpose

F01BRF factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of
the entire matrix, or, optionally, first permutes the matrix to block lower triangular form and then only
factorizes the diagonal blocks.

2 Specification

SUBROUTINE F01BRF (N, NZ, A, LICN, IRN, LIRN, ICN, PIVOT, IKEEP, IW, W,
1 LBLOCK, GROW, ABORT, IDISP, IFAIL)

INTEGER N, NZ, LICN, IRN(LIRN), LIRN, ICN(LICN), IKEEP(5*N),
1 IW(8*N), IDISP(10), IFAIL
double precision A(LICN), PIVOT, W(N)
LOGICAL LBLOCK, GROW, ABORT(4)

3 Description

Given a real sparse matrix A, F01BRF may be used to obtain the LU factorization of a permutation of A,

PAQ ¼ LU

where P and Q are permutation matrices, L is unit lower triangular and U is upper triangular. The routine
uses a sparse variant of Gaussian elimination, and the pivotal strategy is designed to compromise between
maintaining sparsity and controlling loss of accuracy through round-off.

Optionally the routine first permutes the matrix into block lower triangular form and then only factorizes
the diagonal blocks. For some matrices this gives a considerable saving in storage and execution time.

Extensive data checks are made; duplicated non-zeros can be accumulated.

The factorization is intended to be used by F04AXF to solve sparse systems of linear equations Ax ¼ b or

ATx ¼ b. If several matrices of the same sparsity pattern are to be factorized, F01BSF should be used for
the second and subsequent matrices.

The method is fully described in Duff (1977).

A more recent algorithm for the same calculation is provided by F11MEF.

4 References

Duff I S (1977) MA28 – a set of Fortran subroutines for sparse unsymmetric linear equations AERE Report
R8730 HMSO

5 Parameters

1: N – INTEGER Input

On entry: n, the order of the matrix A.

Constraint: N > 0.

F01 – Matrix Factorizations F01BRF

[NP3657/21] F01BRF.1

2: NZ – INTEGER Input

On entry: the number of non-zero elements in the matrix A.

Constraint: NZ > 0.

3: AðLICNÞ – double precision array Input/Output

On entry: AðiÞ, for i ¼ 1; 2; . . . ;NZ, must contain the non-zero elements of the sparse matrix A.
They can be in any order since F01BRF will reorder them.

On exit: the non-zero elements in the LU factorization. The array must not be changed by you
between a call of F01BRF and a call of F04AXF.

4: LICN – INTEGER Input

On entry: the dimension of the arrays A and ICN as declared in the (sub)program from which
F01BRF is called. Since the factorization is returned in A and ICN, LICN should be large enough
to accommodate this and should ordinarily be 2 to 4 times as large as NZ.

Constraint: LICN � NZ.

5: IRNðLIRNÞ – INTEGER array Input/Output

On entry: IRNðiÞ, for i ¼ 1; 2; . . . ;NZ, must contain the row index of the non-zero element stored in
AðiÞ.
On exit: the array is overwritten and is not needed for subsequent calls of F01BSF or F04AXF.

6: LIRN – INTEGER Input

On entry: the dimension of the array IRN as declared in the (sub)program from which F01BRF is
called. It need not be as large as LICN; normally it will not need to be very much greater than NZ.

Constraint: LIRN � NZ.

7: ICNðLICNÞ – INTEGER array Communication Array

ICNðiÞ, for i ¼ 1; 2; . . . ;NZ, must contain, on entry, the column index of the non-zero element
stored in AðiÞ. ICN contains, on exit, the column indices of the non-zero elements in the
factorization. The array must not be changed by you between a call of F01BRF and subsequent
calls of F01BSF or F04AXF.

8: PIVOT – double precision Input

On entry: should have a value in the range 0:0 � PIVOT � 0:9999 and is used to control the choice
of pivots. If PIVOT < 0:0, the value 0:0 is assumed, and if PIVOT > 0:9999, the value 0:9999 is
assumed. When searching a row for a pivot, any element is excluded which is less than PIVOT
times the largest of those elements in the row available as pivots. Thus decreasing PIVOT biases
the algorithm to maintaining sparsity at the expense of stability.

Suggested value: PIVOT ¼ 0:1 has been found to work well on test examples.

9: IKEEPð5� NÞ – INTEGER array Communication Array

IKEEP contains, on exit, indexing information about the factorization. The array must not be
changed by you between a call of F01BRF and calls of F01BSF or F04AXF.

10: IWð8� NÞ – INTEGER array Workspace

11: WðNÞ – double precision array Output

On exit: if GROW ¼ :TRUE:, Wð1Þ contains an estimate (an upper bound) of the increase in size of
elements encountered during the factorization (see GROW); the rest of the array is used as
workspace.

If GROW ¼ :FALSE:, the array is not used.

F01BRF NAG Fortran Library Manual

F01BRF.2 [NP3657/21]

12: LBLOCK – LOGICAL Input

On entry: if LBLOCK ¼ :TRUE:, the matrix is preordered into block lower triangular form before
the LU factorization is performed; otherwise the entire matrix is factorized.

Suggested value: LBLOCK ¼ :TRUE: unless the matrix is known to be irreducible, or is singular
and an upper bound on the rank is required.

13: GROW – LOGICAL Input

On entry: if GROW ¼ :TRUE:, then on exit Wð1Þ contains an estimate (an upper bound) of the
increase in size of elements encountered during the factorization. If the matrix is well-scaled (see
Section 8.2), then a high value for Wð1Þ indicates that the LU factorization may be inaccurate and
you should be wary of the results and perhaps increase the parameter PIVOT for subsequent runs
(see Section 7).

Suggested value: GROW ¼ :TRUE:.

14: ABORTð4Þ – LOGICAL array Input

On entry: if ABORTð1Þ ¼ :TRUE:, F01BRF will exit immediately on detecting a structural
singularity (one that depends on the pattern of non-zeros) and return IFAIL ¼ 1; otherwise it will
complete the factorization (see Section 8.3).

If ABORTð2Þ ¼ :TRUE:, F01BRF will exit immediately on detecting a numerical singularity (one
that depends on the numerical values) and return IFAIL ¼ 2; otherwise it will complete the
factorization (see Section 8.3).

If ABORTð3Þ ¼ :TRUE:, F01BRF will exit immediately (with IFAIL ¼ 5) when the arrays A and
ICN are filled up by the previously factorized, active and unfactorized parts of the matrix; otherwise
it continues so that better guidance on necessary array sizes can be given in IDISPð6Þ and IDISPð7Þ,
and will exit with IFAIL in the range 4 to 6. Note that there is always an immediate error exit if the
array IRN is too small.

If ABORTð4Þ ¼ :TRUE:, F01BRF exits immediately (with IFAIL ¼ 13) if it finds duplicate
elements in the input matrix.

If ABORTð4Þ ¼ :FALSE:, F01BRF proceeds using a value equal to the sum of the duplicate
elements. In either case details of each duplicate element are output on the current advisory
message unit (see X04ABF), unless suppressed by the value of IFAIL on entry.

Suggested value:

ABORTð1Þ ¼ :TRUE:;
ABORTð2Þ ¼ :TRUE:;
ABORTð3Þ ¼ :FALSE:;
ABORTð4Þ ¼ :TRUE:.

15: IDISPð10Þ – INTEGER array Communication Array

IDISP is used to communicate information about the factorization to you, on exit, and also between
a call of F01BRF and subsequent calls to F01BSF or F04AXF.

IDISPð1Þ and IDISPð2Þ indicate the position in arrays A and ICN of the first and last elements in
the LU factorization of the diagonal blocks. (IDISPð2Þ gives the number of non-zeros in the
factorization.) IDISPð1Þ and IDISPð2Þ must not be changed by you between a call of F01BRF and
subsequent calls to F01BSF or F04AXF.

IDISPð3Þ and IDISPð4Þ monitor the adequacy of ‘elbow room’ in the arrays IRN and A (and ICN)
respectively, by giving the number of times that the data in these arrays has been compressed during
the factorization to release more storage. If either IDISPð3Þ or IDISPð4Þ is quite large (say greater
than 10), it will probably pay you to increase the size of the corresponding array(s) for subsequent
runs. If either is very low or zero, then you can perhaps save storage by reducing the size of the
corresponding array(s).

F01 – Matrix Factorizations F01BRF

[NP3657/21] F01BRF.3

IDISPð5Þ, when LBLOCK ¼ :FALSE:, gives an upper bound on the rank of the matrix; when
LBLOCK ¼ :TRUE:, gives an upper bound on the sum of the ranks of the lower triangular blocks.

IDISPð6Þ and IDISPð7Þ give the minimum size of arrays IRN and A (and ICN) respectively which
would enable a successful run on an identical matrix (but some ‘elbow-room’ should be allowed –
see Section 8).

IDISPð8Þ to 10ð Þ are only used if LBLOCK ¼ :TRUE:.

IDISPð8Þ gives the structural rank of the matrix.

IDISPð9Þ gives the number of diagonal blocks.

IDISPð10Þ gives the size of the largest diagonal block.

16: IFAIL – INTEGER Input/Output

For this routine, the normal use of IFAIL is extended to control the printing of error and warning
messages as well as specifying hard or soft failure (see Chapter P01).

On entry: IFAIL must be set to a value with the decimal expansion cba, where each of the decimal
digits c, b and a must have a value of 0 or 1.

a ¼ 0 specifies hard failure, otherwise soft failure;

b ¼ 0 suppresses error messages, otherwise error messages will be printed (see Section 6);

c ¼ 0 suppresses warning messages, otherwise warning messages will be printed (see Section 6).

The recommended value for inexperienced users is 110 (i.e., hard failure with all messages printed).

On exit: IFAIL ¼ 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL ¼ 0 or �1, explanatory error messages are output on the current error message unit (as
defined by X04AAF).

Errors or warnings detected by the routine:

IFAIL ¼ �2

Successful factorization of a numerically singular matrix (which may also be structurally singular)
(see Section 8.3).

IFAIL ¼ �1

Successful factorization of a structurally singular matrix (see Section 8.3).

IFAIL ¼ 1

The matrix is structurally singular and the factorization has been abandoned (ABORTð1Þ was
.TRUE. on entry).

IFAIL ¼ 2

The matrix is numerically singular and the factorization has been abandoned (ABORTð2Þ was
.TRUE. on entry).

IFAIL ¼ 3

LIRN is too small: there is not enough space in the array IRN to continue the factorization. You are
recommended to try again with LIRN (and the length of IRN) equal to at least IDISPð6Þ þ N=2.

IFAIL ¼ 4

LICN is much too small: there is much too little space in the arrays A and ICN to continue the
factorization.

F01BRF NAG Fortran Library Manual

F01BRF.4 [NP3657/21]

IFAIL ¼ 5

LICN is too small: there is not enough space in the arrays A and ICN to store the factorization. If
ABORTð3Þ was .FALSE. on entry, the factorization has been completed but some of the LU factors
have been discarded to create space; IDISPð7Þ then gives the minimum value of LICN (i.e., the
minimum length of A and ICN) required for a successful factorization of the same matrix.

IFAIL ¼ 6

LICN and LIRN are both too small: effectively this is a combination of IFAIL ¼ 3 and 5 (with
ABORTð3Þ ¼ :FALSE:).

IFAIL ¼ 7

LICN is too small: there is not enough space in the arrays A and ICN for the permutation to block
triangular form.

IFAIL ¼ 8

On entry, N � 0.

IFAIL ¼ 9

On entry, NZ � 0.

IFAIL ¼ 10

On entry, LICN < NZ.

IFAIL ¼ 11

On entry, LIRN < NZ.

IFAIL ¼ 12

On entry, an element of the input matrix has a row or column index (i.e., an element of IRN or
ICN) outside the range 1 to N.

IFAIL ¼ 13

Duplicate elements have been found in the input matrix and the factorization has been abandoned
(ABORTð4Þ ¼ :TRUE: on entry).

7 Accuracy

The factorization obtained is exact for a perturbed matrix whose i; jð Þth element differs from aij by less
than 3��mij where � is the machine precision, � is the growth value returned in Wð1Þ if
GROW ¼ :TRUE:, and mij the number of Gaussian elimination operations applied to element i; jð Þ.
The value of mij is not greater than n and is usually much less. Small � values therefore guarantee
accurate results, but unfortunately large � values may give a very pessimistic indication of accuracy.

8 Further Comments

8.1 Timing

The time required may be estimated very roughly from the number � of non-zeros in the factorized form
(output as IDISPð2Þ) and for F01BRF and its associates is

F01BRF: 5�2=n units
F01BSF: �2=n units
F04AXF: 2� units

F01 – Matrix Factorizations F01BRF

[NP3657/21] F01BRF.5

where our unit is the time for the inner loop of a full matrix code (e.g., solving a full set of equations takes

about 1
3n

3 units). Note that the faster F01BSF time makes it well worthwhile to use this for a sequence of
problems with the same pattern.

It should be appreciated that � varies widely from problem to problem. For network problems it may be
little greater than NZ, the number of non-zeros in A; for discretization of two-dimensional and three-

dimensional partial differential equations it may be about 3nlog2n and 1
2n

5=3, respectively.

The time taken to find the block lower triangular form (LBLOCK ¼ :TRUE:) is typically 5–15% of the
time taken by the routine when it is not found (LBLOCK ¼ :FALSE:). If the matrix is irreducible
(IDISPð9Þ ¼ 1 after a call with LBLOCK ¼ :TRUE:) then this time is wasted. Otherwise, particularly if
the largest block is small (IDISPð10Þ � n), the consequent savings are likely to be greater.

The time taken to estimate growth (GROW ¼ :TRUE:) is typically under 20% of the overall time.

The overall time may be substantially increased if there is inadequate ‘elbow-room’ in the arrays A, IRN
and ICN. When the sizes of the arrays are minimal (IDISPð6Þ and IDISPð7Þ) it can execute as much as
three times slower. Values of IDISPð3Þ and IDISPð4Þ greater than about 10 indicate that it may be
worthwhile to increase array sizes.

8.2 Scaling

The use of a relative pivot tolerance PIVOT essentially presupposes that the matrix is well-scaled, i.e., that
the matrix elements are broadly comparable in size. Practical problems are often naturally well-scaled but
particular care is needed for problems containing mixed types of variables (for example millimetres and
neutron fluxes).

8.3 Singular and Rectangular Systems

It is envisaged that F01BRF will almost always be called for square non-singular matrices and that
singularity indicates an error condition. However, even if the matrix is singular it is possible to complete
the factorization. It is even possible for F04AXF to solve a set of equations whose matrix is singular
provided the set is consistent.

Two forms of singularity are possible. If the matrix would be singular for any values of the non-zeros
(e.g., if it has a whole row of zeros), then we say it is structurally singular, and continue only if
ABORTð1Þ ¼ :FALSE:. If the matrix is non-singular by virtue of the particular values of the non-zeros,
then we say that it is numerically singular and continue only if ABORTð2Þ ¼ :FALSE:, in which case an
upper bound on the rank of the matrix is returned in IDISPð5Þ when LBLOCK ¼ :FALSE:.

Rectangular matrices may be treated by setting N to the larger of the number of rows and numbers of
columns and setting ABORTð1Þ ¼ :FALSE:.

Note: the soft failure option should be used (last digit of IFAIL ¼ 1) if you wish to factorize singular
matrices with ABORTð1Þ or ABORTð2Þ set to .FALSE..

8.4 Duplicated Non-zeros

The matrix A may consist of a sum of contributions from different sub-systems (for example finite
elements). In such cases you may rely on F01BRF to perform assembly, since duplicated elements are
summed.

8.5 Determinant

The following code may be used to compute the determinant of A (as the double precision variable DET)
after a call of F01BRF:

F01BRF NAG Fortran Library Manual

F01BRF.6 [NP3657/21]

DET = 1.0
ID = IDISP(1)
DO 10 I = 1, N

IDG = ID + IKEEP(3*N+I)
DET = DET*A(IDG)
IF (IKEEP(N+I).NE.I)DET = -DET
IF (IKEEP(2*N+I).NE.I)DET = -DET
ID = ID + IKEEP(I)

10 CONTINUE

9 Example

To factorize the real sparse matrix:

5 0 0 0 0 0
0 2 �1 2 0 0
0 0 3 0 0 0

�2 0 0 1 1 0
�1 0 0 �1 2 �3
�1 �1 0 0 0 6

0
BBBBBB@

1
CCCCCCA
.

This example program simply prints out some information about the factorization as returned by F01BRF
in Wð1Þ and IDISP. Normally the call of F01BRF would be followed by a call of F04AXF (see Section 9
of the document for F04AXF).

9.1 Program Text

* F01BRF Example Program Text
* Mark 14 Revised. NAG Copyright 1989.
* .. Parameters ..

INTEGER NMAX, NZMAX, LICN, LIRN
PARAMETER (NMAX=20,NZMAX=50,LICN=3*NZMAX,LIRN=3*NZMAX/2)
INTEGER NIN, NOUT
PARAMETER (NIN=5,NOUT=6)

* .. Local Scalars ..
DOUBLE PRECISION U
INTEGER I, IFAIL, N, NZ
LOGICAL GROW, LBLOCK

* .. Local Arrays ..
DOUBLE PRECISION A(LICN), W(NMAX)
INTEGER ICN(LICN), IDISP(10), IKEEP(NMAX,5), IRN(LIRN),

+ IW(NMAX,8)
LOGICAL ABORT(4)

* .. External Subroutines ..
EXTERNAL F01BRF, X04ABF

* .. Executable Statements ..
WRITE (NOUT,*) ’F01BRF Example Program Results’

* Skip heading in data file
READ (NIN,*)
READ (NIN,*) N, NZ
CALL X04ABF(1,NOUT)
IF (N.GT.0 .AND. N.LE.NMAX .AND. NZ.GT.0 .AND. NZ.LE.NZMAX) THEN

READ (NIN,*) (A(I),IRN(I),ICN(I),I=1,NZ)
U = 0.1D0
LBLOCK = .TRUE.
GROW = .TRUE.
ABORT(1) = .TRUE.
ABORT(2) = .TRUE.
ABORT(3) = .FALSE.
ABORT(4) = .TRUE.
IFAIL = 110

*
CALL F01BRF(N,NZ,A,LICN,IRN,LIRN,ICN,U,IKEEP,IW,W,LBLOCK,GROW,

+ ABORT,IDISP,IFAIL)
*

WRITE (NOUT,*)
WRITE (NOUT,99999)

+ ’Number of non-zeros in decomposition =’, IDISP(2)

F01 – Matrix Factorizations F01BRF

[NP3657/21] F01BRF.7

WRITE (NOUT,99999)
+ ’Minimum size of array IRN =’, IDISP(6)

WRITE (NOUT,99999)
+ ’Minimum size of arrays A and ICN =’, IDISP(7)

WRITE (NOUT,99999)
+ ’Number of compresses on IRN (IDISP(3)) =’, IDISP(3)

WRITE (NOUT,99999)
+ ’Number of compresses on A and ICN (IDISP(4)) =’, IDISP(4)

IF (GROW) THEN
WRITE (NOUT,*)
WRITE (NOUT,99998) ’Value of W(1) =’, W(1)

END IF
IF (LBLOCK) THEN

WRITE (NOUT,*)
WRITE (NOUT,99999) ’Structural rank =’,

+ IDISP(8)
WRITE (NOUT,99999) ’Number of diagonal blocks =’,

+ IDISP(9)
WRITE (NOUT,99999) ’Size of largest diagonal block =’,

+ IDISP(10)
END IF

ELSE
WRITE (NOUT,99999) ’N or NZ is out of range: N = ’, N,

+ ’ NZ = ’, NZ
END IF
STOP

*
99999 FORMAT (1X,A,I5,A,I5)
99998 FORMAT (1X,A,F8.4)

END

9.2 Program Data

F01BRF Example Program Data
6 15
5.0 1 1 2.0 2 2 -1.0 2 3 2.0 2 4 3.0 3 3

-2.0 4 1 1.0 4 4 1.0 4 5 -1.0 5 1 -1.0 5 4
2.0 5 5 -3.0 5 6 -1.0 6 1 -1.0 6 2 6.0 6 6

9.3 Program Results

F01BRF Example Program Results

Number of non-zeros in decomposition = 16
Minimum size of array IRN = 15
Minimum size of arrays A and ICN = 19
Number of compresses on IRN (IDISP(3)) = 0
Number of compresses on A and ICN (IDISP(4)) = 0

Value of W(1) = 18.0000

Structural rank = 6
Number of diagonal blocks = 3
Size of largest diagonal block = 4

F01BRF NAG Fortran Library Manual

F01BRF.8 (last) [NP3657/21]

	F01BRF
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	N
	NZ
	A
	LICN
	IRN
	LIRN
	ICN
	PIVOT
	IKEEP
	IW
	W
	LBLOCK
	GROW
	ABORT
	IDISP
	IFAIL

	6 Error Indicators and Warnings
	IFAIL = -2
	IFAIL = -1
	IFAIL = 1
	IFAIL = 2
	IFAIL = 3
	IFAIL = 4
	IFAIL = 5
	IFAIL = 6
	IFAIL = 7
	IFAIL = 8
	IFAIL = 9
	IFAIL = 10
	IFAIL = 11
	IFAIL = 12
	IFAIL = 13

	7 Accuracy
	8 Further Comments
	8.1 Timing
	8.2 Scaling
	8.3 Singular and Rectangular Systems
	8.4 Duplicated Non-eros
	8.5 Determinant

	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG Library Manual, Mark 21
	Foreword
	Introduction
	Essential Introduction - essential reading for all users
	NAG Fortran Library specific documentation
	Mark 21 News

	NAG SMP Library specific documentation
	SMP Introduction - essential reading for all SMP users
	Mark 21 News - SMP Library
	SMP Tuned and Enhanced Routines

	Thread Safety
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Acknowledgements

	Indexes
	Implementation-specific Information
	A00 - Library Identification
	Chapter Introduction

	A02 - Complex Arithmetic
	Chapter Introduction

	C02 - Zeros of Polynomials
	Chapter Introduction

	C05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	C06 - Summation of Series
	Chapter Introduction

	D01 - Quadrature
	Chapter Introduction

	D02 - Ordinary Differential Equations
	D02 - Ordinary Differential Equations
	D02M/N Introduction

	D03 - Partial Differential Equations
	Chapter Introduction

	D04 - Numerical Differentiation
	Chapter Introduction

	D05 - Integral Equations
	Chapter Introduction

	D06 - Mesh Generation
	Chapter Introduction

	E01 - Interpolation
	Chapter Introduction

	E02 - Curve and Surface Fitting
	Chapter Introduction

	E04 - Minimizing or Maximizing a Function
	Chapter Introduction

	F - Linear Algebra
	Chapter Introduction

	F01 - Matrix Factorizations
	Chapter Introduction

	F02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	F03 - Determinants
	Chapter Introduction

	F04 - Simultaneous Linear Equations
	Chapter Introduction

	F05 - Orthogonalisation
	Chapter Introduction

	F06 - Linear Algebra Support Routines
	Chapter Introduction

	F07 - Linear Equations (LAPACK)
	Chapter Introduction

	F08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	F11 - Sparse Linear Algebra
	Chapter Introduction

	F12 - Large Scale Eigenproblems
	Chapter Introduction

	G01 - Simple Calculations on Statistical Data
	Chapter Introduction

	G02 - Correlation and Regression Analysis
	Chapter Introduction

	G03 - Multivariate Methods
	Chapter Introduction

	G04 - Analysis of Variance
	Chapter Introduction

	G05 - Random Number Generators
	Chapter Introduction

	G07 - Univariate Estimation
	Chapter Introduction

	G08 - Nonparametric Statistics
	Chapter Introduction

	G10 - Smoothing in Statistics
	Chapter Introduction

	G11 - Contingency Table Analysis
	Chapter Introduction

	G12 - Survival Analysis
	Chapter Introduction

	G13 - Time Series Analysis
	Chapter Introduction

	H - Operations Research
	Chapter Introduction

	M01 - Sorting
	Chapter Introduction

	P01 - Error Trapping
	Chapter Introduction

	S - Approximations of Special Functions
	Chapter Introduction

	X01 - Mathematical Constants
	Chapter Introduction

	X02 - Machine Constants
	Chapter Introduction

	X03 - Inner Products
	Chapter Introduction

	X04 - Input/Output Utilities
	Chapter Introduction

	X05 - Date and Time Utilities
	Chapter Introduction

